Case Study for MyFlix Full-Stack Project

OVERVIEW

MyFlix is a web application developed using
the MERN stack that provides users with
access to information about various movies,
directors, and genres. Users can create an
account, update their personal information,
and curate a list of their favorite movies.
This project was developed as part of a full-
stack web development course to
demonstrate mastery in both server-side
and client-side development using modern
JavaScript technologies.

Forrest Gump The Godfather The Shawshank Redemption The Matrix

PURPOSE & CONTEXT

The MyFlix project was a comprehensive personal project during my web development course
at CareerFoundry. The goal was to create a full-stack application from scratch i.e. backend API
development to frontend user interface, to showcase my skills in full-stack JavaScript
development. This project highlights my proficiency in building server-side components and
dynamic client-side applications.

OBJECTIVE

The primary objective was to build a complete, functioning web application that allows users to
interact with a movie database. This included developing the server-side API using Node.js,
Express, and MongoDB, and the client-side application using React and Redux.

DURATION

The project spanned over two course achievements, with the backend development completed
first, followed by the frontend. The entire project took several months to complete, with
additional time allocated for learning and mastering new technologies.

APPROACH

Tools, Skills, and Methodologies

Technologies Used: Node.js, Express, MongoDB, Mongoose, React, Redux, Bootstrap.

Skills Applied: Full-stack development, REST API design, database management, state
management, responsive design.

Methodologies: Test-driven development (TDD).

Backend Development
Objective: Build the server-side component of the MyFlix application.

Steps:

1. API Development: Created a RESTful API using Node.js and Express to handle HTTP
requests.

2. Database Integration: Used MongoDB for the database, interfaced with Mongoose for
schema modeling.

3. Endpoints: Implemented CRUD operations using postman to manage movies, users,
and favorites.

Return a list of all movies.

Provide data about specific movies, genres, and directors.
Allow user registration, login, and profile management.
Manage users' favorite movies.

4. Security: Added user authentication and authorization using JWT.
5. Testing: Utilized Postman for endpoint testing to ensure the API's functionality.

FXPICHIE

~ OFEN EDITORS

> ouTUNE

TIMELINE

0 Atlas i Mer

I Project0

Overview

€ DEPLOYMENT
Database

Datta Lake

Bl SERVICES
Device & Edge Sync

Triggers

Data API

Data Federation
tlos Search

Stream Processing

Migration

8 SECURITY

Baskup

Database Access

Network Access

Advanced

Goto

v O AccessManager v Billng
DataServices App Services Charts
i ? NS: 29 View your schema example(s) 2

* Greate Database myMoviesDb.movies

Q searo . STORAGE SIZE:36KB LOGICAL DATA SIZE: 477K

ToTAL DO

TAL SIZE: 20KB

Find Indexes

hema Anti-Paf

arch Inde:
mern-amazona-db

ate queries from natural language in Compass®

myMoviesDb
directors Filter & a4 L tvalue'
genres
1100F 10
movies
users _id: Objectld('65d28adaeteb FG6b)
title: "Forrest Gump"
sample_airbnb description : "Robert Zemeckis' heartwarming journey through decades of American hist.”
» genre : Object
sample_analytics * director : Object
featured : false
sample_geospatial imageUrl : “https://resizing.flixster.com/ XZATHZM39UwaGIIFWKAESFSoak=/v3/t/assetsm"
sample_guides
sample_mflix e6eb7fE6bf7b8T3e")
title :
sample_restaurants description : is Ford Coppola's classic mafia epic that explores the intricate ."
» genre : Object

director : Object
featured i true
imageUrl : "https

sample_supplies

/m.media-amazon. com/ images/M

sample_training

et

XNRUTYT AN B BHTYcL WITNW...

AllClusters GetHelp v Moriine +
LN a

il VISUALIZE YOUR DATA T REFRESH

INSERT DOCUMENT

cset | [EECI Options »

Challenges:

e Ensuring data validation and security compliance.
e Integrating multiple middleware modules for data parsing and logging.

Frontend Development
Objective: Develop the client-side interface for MyFlix using React.

Steps:

1. Ul Design: Built a single-page application (SPA) with React, ensuring responsive and
user-friendly design.
2. Views: Created several views including:

Main view for displaying all movies.

Single movie view for detailed information and adding to favorites.
Login and Signup views for user authentication.

Profile view for managing user information and favorite movies.

3. Routing: Implemented state routing to navigate between different views.
4. Styling: Used Bootstrap for consistent styling and layout.

MyFlix Login Signup

Username:

Password:

MyFlix e MyFlix Movies Profle Logout

My Profile

Update profile information

Forrest Gump The Godfather The Shawshank Redemption The Matrix

My Movies o

~Forrest
almp

=i

SCUNDIRS ST

é

Challenges:
e Learning curve with React and Redux to achieve desired results.

e Ensuring smooth integration with the backend API for data fetching and state
updates.

RESULTS

The MyFlix project successfully demonstrates the integration of backend and frontend
technologies to create a cohesive web application. Users can seamlessly register, log in,
browse movies, and manage their favorites. The final application meets the initial objectives,
providing a robust platform for exploring movie information.

Reflections

e Challenges: The most challenging part was mastering React and Redux for the
client-side development.

e Successes: Successfully implemented a full-stack application from scratch, gaining
valuable insights into both server-side and client-side development.

e Future Improvements: Plan to enhance the UI/UX design further and optimize the
application for better performance.

Credits

Role: Lead Developer
Tutor: Emanuel Okello
Mentor: Stephen Barungi

